AD=Al04 858

UNCLASSIFIED

MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB F/6 12/

PRACTICAL ASPECTS OF NONLINEAR OPTIMIZATION,(U)

JUN 81
TR=576

R B HOLMES: J W TOLLESON

F19628=80=C~=0002

NL

E£SO~TR=-81~155

ADA104858

A v 5 YR

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

PRACTICAL ASPECTS OF NONLINEAR OPTIMIZATION

R.B. HOLMES
J.W. TOLLESON

Group 32

TECHNICAL REPORT 576

19 JUNE 1981

Approved for public release; distribution unlimited.

LEXINGTON MASSACHUSETTS

5

T s
P

ABSTRACT

v e f

A general purpose nonlinear programming method and
computer code are presented. The method is basically heuristic
but extremely simple and reliable. Interactive operation of the

-

code and its performance on several test problems is described.

/

Accossion Yor
NTIS o x
DrIo T]

Unoneo s e

-t

-
<t .
wl

o -

X
Ve

\

A

CONTENTS :

- 2

oy

Abstract iii }
1. BACKGROUND 1
II. METHODOLOGICAL AND PROGRAMMING DESIDERATA 7
III. THE PROPOSED METHOD 10
Iv. PARAMETER AND SUBROUTINE SPECIFICATIONS 22
V. PROGRAM OPERATION AND EXAMPLES 26
VI. CONCLUSIONS 35
References 36
Appendix 38

FRECEDENG PAGE MLANK-NOT FILMED

I. BACKGROUND

Quite commonly, problems in the statistical and engineer-
ing sciences require the optimization of some function for their
solution. Such problems include those of resource allocation,
portfolio selection, curve and surface fitting (e.g., linear
or nonlinear regression), approximation theory, signal processing
algorithms (optimizing a model fit), and optimal control (via ;
discretization). In addition, systems of nonlinear equations can
be solved by minimizing some function of the magnitudes of the
residuals. As for the statistical sciences in general we have
the following recent comment of C.R. Rao: "All statistical pro-

cedures are, in the ultimate analysis, solutions to suitably

formulated optimization problems" [1],
Throughout this report we shall be concerned with

optimizations of the particular form:
minimize f(x), x e @, (1)

where Q is a solid subset of some finite dimensional Euclidean
space, describable by finitely many contraints. More precisely,

we assume that 2 can be expressed as
— n. : 3
Q = {xeR": a;<x,<b;, li<n, c <9, (x)idj, 1<j<m}, (2)

with the understanding the Q so defined has a non-empty interior

(is "solid"). No qualitative assumptions on the objective

[U

FS W VN

.y ARy

FEPYSOR

F

function f in (1) or on the constraint functions gj in (2), such
as convexity, differentiability, etc., are made.

Problems of the form of (1) are known as mathematical
programs., They have been the subject of an immense amount of
study over the lust forty years, beginning with the well-known
special case of linear programs, wherein the constraint and
objective functions are linear functions of their variables. As .
a result a considerable body of both theory and computational
algorithms has been developed, usually under convexity and/or
differentiability assumptions. The books [2-8] provide a k

representative description of these developments; in addition,

there are specialized journals such as Journal of Optimization
Theory and Applications (since 1967) and Mathematical Programming
(since 1970).

There is a basic dichotomy in programming algorithms:

they may be designed to converge to local or global minima.

Recall that a local minimum of £ is a point xer such that

f(x)zf(xo) for every x in Q that is sufficiently near to X

while a global minimum is indeed a solution of (1). Local minima
can be characterized or at least partially identified in various
ways, depending on the nature of the problem. A prototypical
necessary condition for x, to be a local minimum of a differentiable

0
rogram (subject to a "constraint qualification" on the geometr
p Y

of) is due to Kuhn and Tucker [9])] and might be considered to be the

. egw

fundamental theorem of mathematical programming. In its geometric
form 1t states in essence that the negative gradient of f at X,

must belong to the cone generated by the gradients at x, of the

0
active constraints therz. Further, under various generalized
convexity hypotheses, e.g., that f should be pseudoconvex and the
gj quasiconvex, any local minimum is actually a global minimum;
in such a case, then, the Kuhn-Tucker condition characterizes the
solutions of (1). This remark applies a fortiori to the case
where all functions are actually convex.

Such characterizations are sometimes used to provide
stopping criteria for numerical algorithms. For example, should
a local minimum occur at an interior point of @, as would certainly
be the case if there were no constraints, the K-T condition
reduces to the vanishing of the gradient Vf of f there, and in
practice an algorithm might be terminated at a point where ||Vf]|
becomes sufficiently small. Of course, such a point will not
necessarily be a local minimum nor even close to one in the absence
of convexity conditions. Similarly the popular "method of feasible
directions" [3,10] attempts to terminate at a Kuhn-Tucker point.

In the important special case where all constraint
functions are linear, so that § is a simplex, the constraint
qualification is automatically satisfied. 1In this case several

effective algorithms exist provided that Vf is available. These

include the method of feasible directions, the gradient projection

algorithm [11], and an approximation method wherein f is replaced

by its first order Taylor expansion; this approximation yields a linear program
and the algorithm generates a sequence of such programs {12].

In this linearly constrained case there are very

efficient finite algorithms available provided the objective

function £ is either linear or else convex and quadratic.

Failing this, but with Vf available, the various methods mentioned

in the preceding paragraph generate sequences of linear programs,

systems of linear equations, and line searches (one-dimensional

optimizations) to be solved. Yet other methods generate sequences

of gquadratic programs to be solved by constructing quadratic

approximations to £ (13, 14]. When Vf is not available but

can be assumed to exist and be smooth, a powerful but rather in-

volved algorithm has recently been described in [15].

For the general (nonlinearly) constrained mathematical

program there are adaptations of the above algorithms obtained

{ by linearizing the contraints. There is also a variety of

indirect methods which may operate outside the feasible set (.

{
! Examples are cutting plane algorithms and the use of penalty

functions [2, 4]. The former generate a sequence of linear

5 programs over a decreasing sequence of simplices which enclose Q; »

the possiblity of doing so depends on a standard trick of

; P utilizing a linear objective function at the cost of introducing

an additional variable and constraint. The latter are functions

that are large off and which are added to f; a sequence of these

new objective functions is then minimized without constraints, All these

methods involve assorted numerical difficulties as well as the
possiblity of termination outside Q. Should the objective
function be undefined or meaningless off (,this outcome is
naturally untenable,

In the last decade there has been upsurge of interest
in the global optimization problem per se; see (16, 17, 18].
This problem in full generality is very different from and more
difficult than the problem of local optimization just discussed.
There is relatively little theory in support of proposed methods
unless fairly strong restrictions are placed on the problems
to which they are applied.

The methods may roughly be classified as deterministic
or probabilistic, although many methods have both features. Most
of the effort has gone into unconstrained optimization or else
into problems whdch only involve bounds on the variables.

Of these the probabilistic methods appear in general
more attractive, in part because of the lack of hypotheses that
must be imposed on the problem structure and in part because
they seem less sensitive to increases in dimension. Another
difference concerns the manner of validation of particular
algorithms: with probabilistic methods it may be possible to
give a theoretical a priori measure of tne probability of "success",
while for a deterministic algorithm such a probability can at

best be estimated only through extensive testing.

A s e e e

Among the several popular probabilistic methods we

mention specifically only two: the multistart method and the

sample function method. The former is essentially an iterative

cycle of random searches throughout Q followed by application of

a local minimization algorithm., The latter hypothesizes that the

objective function f is a sample function of a known stochastic

process on 2. The statistics of the process then permit new

points in {i to be generated according to the information provided

by the values of f at preceding points. Further statistical

testing can be employed to assess the likelihood that f could

indeed be a sample path of such a process. Usually the Wiener

process is assumed. At this date the theory and computational

requirements seem to limit this method to small (perhaps only 1!)

| dimensional problems.

To conclude this brief background we note that a general

{ summary of computer codes for mathematical programming that have

‘ been tested, documented, and are available to the public occurs

in [19]. Somewhat earlier there appeared a collection of FORTRAN

listings of optimization codes, along with brief descriptions of

the algorithms and their operations [20}. The potential user

.*

A B emoa

is left to make his own choice as to which method will best serve

his purpose and, unfortunately, the various codes are not of

uniformly high quality.

II. METHODOLOGICAL AND PROGRAMMING DESIDERATA

The authors' experience with numerous "real-world"
optimization problems has persuaded them of the need for a simple
reliable optimization routine that could be interactively operated.
Such a program should in particular be applicable to an essentially
arbitrary objective function, about which little or no prior
information may be available, save a procedure for its evaluation.
This situation occurs, for example when the objective function
represents the output of some "black box" operation, perhaps
from a process optimization or simulation model. 1In any event
the nature of such a function cannot be well understood, gradients
are unavailable except via finite difference approximations,
and convexity (occasionally even continuity) is in doubt. It is
also often the case that the feasible region must be strictly
respected, in that nonfeasible points have no significance for
the problem,

We feel that the nonavailability of analytic gradients
precludes the use of the various local search methods mentioned
in Section I, While some codes have been developed that utilize
difference approximations, this is in general well known to be a
numerically risky and often unstable procedure. There are the
twin perils of too large a differencing interval (leading to
truncation errors) and too small an interval (leading to round-

off and cancellation errors). The situation is not hopeless

e mmmr e - . R ——

N

r gesT
P

v

[15, 21, 22] but it is subtle and one we think worth avoiding,
if possible.

The requirements of simplicity, robustness, and generality
lead us to a combination of global random search and local pattern
search, This last term describes a class of methods wherein
the objective function is systematically evaluated at several points
in a neighborhood of a current point, the resulting function
values are compared, and a new improved point is selected. A
finite number of failures to locate an improved point results in
termination. These methods, and their termination criteria, are
for the most part heuristic, unsupported by significant mathematical
statements of optimality. Nevertheless, they can usually be
expected to perform well, if suboptimally; they will rather
quickly produce a "good" function value, although extreme accuracy
may require many further evaluations, and premature stalls are
possible. Exact solutions to specialized problems (such as an
extreme point solution of a concave minimization) will not normally
be determined precisely.

These last observations lead to an important caveat:
if a program with special structure is confronted there will most
likely exist a more effective specialized algorithm. Of course
tracking down such a method, especially in reliable coded form, may not

be easy (the sources in [19, 20] should be helpful for this

purpose}. Another practical point is this: computer time, even

o . ol A e e semntie A FRR——o Rt B e T L S,

at several hundred dollars/hour is still cheaper than programmer/
analyst time at $10-20/hour. Even if, say, a routine utilizing

gradient (and possible Hessian) data is available, these deriva-

! _ tives must still be calculated and encoded. The savings might
typically amount to a few tenths of a second of execution time,
probably not a cost effective trade-off. An important possible
exception to this advice occurs when the purpose of the optimizing
code is to serve as a subroutine of some large program, which is
to process data in real time, and to apply some control law. In
such a case speed and efficiency are likely to be of real concern,

- and specialized software may be required.

A review of several popular methods of pattern search,
including the complex method which underlies the approach described
below, is given in Chapter VII of [4] and in [6,7]. We also take

{ note of an earlier two-stage heuristic method for unconstrained

optimization announced in [23]. It consists of a single non-ran-

dom global search of pre-determined length from a given initial
point followed by a local pattern search. The latter is of the

Hooke-Jeeves type [6,7], with a modification to account for

i < curvature in the gradient path. No restart or other interactive

wf' features are offered.

-,

III. THE PROPOSED METHOD

The following method meets the criteria we have just
imposed: it is simple, versatile, robust, and can be operated
interactively. It requires as inputs the absolute minimum of
information that is needed to specify a mathematical program of
the type (1), (2), plus a few parameters that essentially deter-
mine how much work the program will do. We also emphasize that
the proposed method requries no lincar algebraic subroutines,
such as matrix inversions or linear equation solvers, nor does
it construct derivative approximations. Our code can thus serve
as an "off the shelf" package for optimization, model fitting, and
nonlinear equation solving. Several examples illustrating the
program's use for such applications will be given in Section V.

In essence the program utilizes the fundamental idea
of Box [24], wherein a random finite set of feasible points is
generated and successively deformed (based on information gleaned
from function evaluations) until it collavses around a local
minimum, or else (on occasion) becomes mired in an area where the
function is essentially constant. Several modifications of this
basic iteration have been made to prevent various possible traps
and infinite loops that are possible when the feasible set fails
to be convex or even connected. Further modifications have been

made to provide several starting and continuation options for the

users, as well as printing and termination options.

To describe the program in greater detail it is convenient to

treat separately its three major aspects:

1) the basic iteration;
2) termination;
3) initialization.

We will then make some comments about the continuation and print-

ing options

Referring to the notation of (1), and assuming that
QCRn, we are given a finite subset K of (!, termed a "complex".
Typically the size of K (denoted KPTS in the program) is strictly
between n and 2n; unless otherwise instructed our program sets
KPTS = least integer > 1l.5n. Three points of K are now singled

out: XNLC, XNXTHI, XHI, so that

(f (XLO) = min{f(X):XeK}

< v.. < £(XNXTHI) <

f(XHI) = max{f (X):XeK}.

The centroid XC of {XeK: X#XHI} is now computed and, for the

moment, is assumed to be feasible (i.e., XC €Q). Next the point

¢ XHI is reflected through XC to a point XNU so that dist (XNU, XC)

STEP-dist(XC, XHI); here STEP is a program parameter typically

in the range (1,2]. Thus

" XNU = XHI + (1+STEP) (XC~XHI). (3)

v 11

Now if it happens that XNU is both feasible and satisfies f(XNU)
< f(XNXTHI) we define a new complex by replacing in K the point
XHI by XNU; in this case the basic iteration is complete.

Should either of the two requirements on XNU fail, XNU
is backed halfway towards the centroid XC along the line through
XC and XHI. If this point meets both requirements we substitute
it for XHI and obtain a new complex. If not, we halve again.

If after a finite number (typically 5-10) of such attempts we

are still unsucessful, we set XNU = XC and commence moving XNU
halfway towards XLO, again trying to meet the twin requirements of
feasibility and lower f-value. If a finite number (typically 10-
20) of such attempts are still unsuccessful, the algorithm is
terminated if the last move resulted in feasibility only. If not,
we reflect the latest XNU an equal distance through XLO and if
both requirements still cannot be met, the algorithm is again
terminated. In all these cases of premature termination a warning
message is printed indicating either an infeasible direction (and
suggesting that the best point XLO is located in a very "thin"
region of Q), or else the inability to decrease the function value
sufficiently, in which case the algorithm is simply "stuck".

There is one other conceivable difficulty that can #
arise during a basic iteration, and that occurs when the centroid

XC is not feasible. Of course, this could only happen when § is

not convex. In this case we again set XNU = XC and commence

moving XNU towards XLO as just described, repeating exactly the

above steps. Hence, either a new complex is obtained or else
termination ensues with the appropriate warning message.

Earlier variants of this basic iteration are described
in the original source (24] and in (4, 20]. A flow chart of our
version appears in Fig. 1 (wherein the identification Point<+—XNU
should be made).

In most "reasonable" optimization problems the basic
iteration as just described will result in a new complex. Con-
sequently we can expect to generate a sequence of complexes and so
must decide when to cease. Roughly we should do so when no further
progress is being achieved. 1In practice we evaluate this con-
dition by means of the absolute and relative oscillation of f on
the complexes. 1If either of these quantities drops under given
thresholds for a finite number (typically 5) of complexes in
succession, the algorithm terminates. Otherwise a new basic
iteration is carried out. Of course an upper bound on the number

of iterations must also be supplied.

Thus, assuming that new complexes can be generated we
control termination with four program parameters: ABSTOL, RELTOL,

NTOL, and NLOOPS. If for a sequence of length NTOL of complexes

13

Cent roid=average of (complex-HI)

1Is
Yes Centroid

r

Wi.ble?

int = Centroid +
teps (Centroid-HI)

No

?

can't get feasiq

ble and better than
NEXTHI, move Point

towards Centroid uwp
to NLLOOPS times.

feasile
and
better

Until Point is feasi-

ble and better,)

Point = Centroid

__ ¥

til Foint is feasible
better than NEXTHI,
Point towards LOW w

N2ZAOOP times.
.

feasiblel

better

Replace HI point with anothar

point which is both feasible
and better than NEXTHI point.

Replace HI with Point

Infeasible

+
Cj;“’ mm“*i:) EXIT: pirection

))

Fig. 1. The basic iteration.

R-576(1 Con't) IIntil Point ie feasible and better

than NEXTHI, move Point towards
farget up to NMOVE times.

IMVE = 0

=
_‘ IMVE = IMVE + 1

lzi_nt-k (Point+Target)

L

can't
' @crr: feasible and @ éﬂ'ﬁ and better

Fig. 1. Continued.

-~

-

Py
.y
s B ama

e ‘f’.

10

e e m——

K we find

K i+NTOL

K

i+l? Tis27°°°

f (XHI) - f(XLO) < ABSTOL, (4)

or failing this, if

£ (XHI) - £(XLO) < RELTOL-. |f (XHI) |, (5)

the program terminates with a convergence assertion. Otherwise,

it terminates with a warning when the number of basic iterations

exceeds NLOOPS. These termination procedures are displayed in Fig. 2.

To initialize the optimization process we must construct
a first complex. Our program permits this to be done in three
ways:

a) by direct assignment;

b) randomly about a given feasible point;

c) choosing the best KPTS points from a preliminary
random search of Q.

Option a) might be used when the geometric structure of was
known and simple (e.g., Q={(xl,...,xn): Oixi,z:xiil), and no
information about the minimum of f over (@ was available. Option
b) is valuable when there is a priori information about f to the

(0)

extent that we believe that for some x(o)eQ, f(x) is close to

min f{Q?). The remaining KPTS-1 points for the initial complex
are then produced sequentially by first drawing a point randomly
within the region defined by the explicit constraints {x: a; <x;
(0)

:bi' liiin} in (2), and then retracting it by halves towards x

until it becomes feasible., If a finite number (typically 10-20)

16

N R e o e L T v A - - - R ‘ .
- § G ISl IR TN T < e T P T Y T UARAOR U s e s e we st e

y

ILOOP =) H ITOL = 0

Find MI, NEXTHI, and LOW points

No Improvement

Replace HI point with another point
which is both feasible and better

than NEXTHI point Infeasible
Direction

Improved

Find new HI, NEXTHI, and LOW
points
TOL = F(HI) ~ F(LOW)

OL < RELTOLe |F(HI)

ITOL = O

‘ ITOL=ITOL+1

ILOOP = ILOOP + 1 Yes

Yes
i - <) < Infeasible <
' EXIT: No Convergence) \EXIT: ConvergencD 611‘: Direction) EXIT: Stuck)

Fig. 2. Algorithm termination.

of these retractions fails to result in feasibility, we begin

again with a new random point.

In the remaining circumstances we are effectively ignorant of both
the geometry of Q and the behavior of f. If so, we utilize option
¢) by making an initial random search of) and retaining the best
KPTS points to form the initial complex. The only complication

here is the number of random points (denoted NRANPT in the program)

to utilize. Clearly we must have NRANPT > KPTS, bu+< also in

practice we must confront the trade-off between the cost in terms

of function evaluations of taking NRANPT large vs. the cost in

terms of low probability of being close to the minimum if NRANPT

is small.

One way to sensibly determine a value of NRANPT is to

require a certain probability of placing at least k points inside
“ a small neighborhood V of the global minimum of £ in Q. If the
relative volume of V in Q is a, then

{ Prob (> k points in V in N tries)

N

n k-1
i 1 - Z ol (1-0) N1
i=0 \1i

k-1 i
N N! .
1= (1=a) Eo(f%a)fT N-1) !
1=

v

1 - (l-a)N Nk-l exp(ﬁ%&
14

so that to make this probability exceed B it suffices to choose

N so large that

(1-)™ ¥*1 exp 12 < 1-8.

In the special case where k=1, the "exp" term can be dropped
from the left hand side.

To illustrate, let us take V be to a cube of side length
2r centered at the global minimum. In general V need not exist
if the minimum is too near the boundary of . However, if there
are no implicit constraints, or if we can be sure for other
reasons that the minimum is well inside §, then it makes sense
to discuss V. Now a=(2r)n/vol(Q) and if k=1 we need to choose

N so that

log(1-B) log(1-B) - log(1-RB)
N > > = vol(f).
—~ log(l-a) - - a (2r)"
The least such N are displayed in Fig. 3 for nominal values of B
and n, with r set = 0.1 and vol(Q)=1., One can easily note a very
prominent "curse of dimensionality" here. This concludes our

discussion of the initialization step in the program,

The progress of the algorithm when applied to a par-
ticular problem can be monitored as desired through the use of
four print options. These are set by assigning to a variable
IPRINT values = 0,1,2,3. The 0 value supresses all printing;
this might be appropriate when the optimization is serving as

a subroutine to a larger program. The 1l value causes only the

final answer (best point and least function value) and machine

b

e b P

TR-576(3)
n
B 2 5 10
0.5 18 2166 6,769,016
0.9 58 7196 22,486,183
0.95 75 9362 29,255,198

Fig. 3. Least number of random samples to
give probability B of at least one sample
falling in cube of radius 0.1 within a
unit n-volume.

execution time to be displayed. The 2 value results in display of
the best initial complex point and corresponding function value
followed by each new improved point, the corresponding lower func-
tion value, and the loop number w en this improvement occurred.
Finally, the 3 value causes the entire initial complex to be dis-
played, followed by further information for every iteration,
whether or not an improvement was achieved. Specifically, the new
point and its function value are displayed along with the index of
the point in the previous complex which it revlaces, and the
number of function evaluations required to obtain the new point.
It remains to discuss the continuation options. Recall
that the program will terminate for one of three reasons: con-
vergence criterion met, number of iterations loops exceeded, or
prematurely, because of failure to construct a new complex. Use
of the IPRINT =2 or 3 option will have enabled the user to gain

an impression of the progress made and its rate since initializa-

tion. 1If this progress is satisfactory but the convergence criterion

20

e

< G N T Y

is unmet, the user will probably wish to continue from the most

recent complex. On the other hand, if the algorithm appears to
be struggling, the user is also given the option of restarting
around the best point discovered. That is, the best point is now

(0)

denoted x and initialization option b) (defined on p. 16) is

implemented.

2l

s

e

-,

~ .""” ?‘&"v‘ i

b -ﬂ}m.n. P

v, PARAMETER AND SUBROUTINE SPECIFICATIONS

The (FORTRAN) program consists of a main program, seven
general subroutines, and two user supplied subroutines. In greater
detail these are described next.

SUBROUTINE BOX is called by the main program to set up
the initial complex, call the basic iterative subroutine GOBOX, and
print the final answer.

SUBROUTINE GOBOX is the basic iterative subroutine; it
accepts an initial complex and iteratively constructs naw ones
until termination. As necessary it calls the special purpose sub-
routines MOVE, FEASBL, CENTER, and the function evaluator FUNC.

SUBROUTINE MOVE repeatedly defines a new point halfway
between two given points until certain termination criteria are
met.

SUBROUTINE FEASBL checks that a given vector belongs to
sets Q@ of the form (2). If not it attempts to reposition this
vector so as to meet all constraints.

SUBROUTINE CENTER computes the centroid of a complex
less one point.

SUBROUTINE GB0 defines an all random initial complex
according to initialization ovotion c¢).

SUBROUTINE GBl defines a random complex to include one

given feasible point according to initialization option b).

SUBROUTINE FUNC computes the value of a given function

~

at a given point in its domain.

SUBROUTINE IMPLCT defines the various implicit constraint
functions gj appearing in (2).

Program parameters and control variables are user supplied
as needed through a NAMELIST specification statement. It assigns
the name "GO" to refer to the following list of variables and
array names...
Problem description: ;
NX: number of independent variables
NIC: number of implicit constraint functions 95 in (2)
MAXMIM: set = +41(-1) to maximize (minimize)
XMIN: array of lower bounds for independent variables
XMAX: array of upper bounds for independent variables
XIMIN: array of lower bounds on constraint functions q
XIMAX: array of upper bounds on constraint functions

Basic iteration controls:

KPTSET: used to prescribe number of points in complex

N1CUTS: upper bound on number of halfway moves towards centroid
N2CUTS: upper bound on number of halfway moves away from centroid
STEP: step size of reflection in basic iteration (see (3))
NLOOPS : upper bound on number of basic iterations

NTOL: convergence parameter = number of consecutive iterations

without sufficient progress.

e A o o BT o L S

ABSTOL: convergence parameter (see (4))

RELTOL: convergence parameter (see (5))

Initialization and run parameters:

. IRUN: program operation control; usage defined in section V i

‘ IPRINT: output control; usage defined in section III

k MAXRAN: bound on number of attempts to establish initial complex y
NRANPT: total number of random draws from feasible set to define

initial all-random complex

SEED: seed used in system uniform random number generator
X0: initial feasible point
XXO: initial feasible complex

Of these variables it is imperative that the user

assign values to the first five and, if NIC > O, to the next two

also. Having done so the program will run using the default set-

tings of the remaining parameters; in particular an all-random

initial complex will be chosen.

In practice, the user will want to consider the appro-

priate values for the initialization and convergence parameters.

According to the initialization option chosen, one of XO, XXO or

NRANPT must be defined. The user will also probably need to assign

relevant values to the convergence tolerance values ABSTOL and

RELTOL, and the iteration bound NLOOPS. By default, ABSTOL=0.,RELTOL=

0.000001 and NLOOPS=500., Also, by default, STEP=1l.5,

KPTS=IFIX (1.5xNX+0.5), N1CUTS=8, N2CUTS=16, and IPRINT=1l. The
use of the program control IRUN is described in the next section,
along with several examples.

As already noted the STEP parameter should satisfy
1.0 < STEP < 2.0. Ideally one would like STEP larger initially to

make rapid oprogress towards the solution point and smaller as this

point is approached. 1In general, larger values of STEP can result
in infeasible reflected points and consequent loss of time in
retreating towards the centroid, while small values of STEP result
in slow progress and increased iterations. However, as the length
of a reflection step is roughly proportional to the diameter of the
associated complex, the step lengths automatically decrease as the
algorithm progresses and the complexes shrink. Hence algorithm

4(performance is relatively indifferent to moderate changes in STEP

and STEP = 1.5 has proved to be a satisfactory default value.

! Finally, there is the matter of "relevant values" for the

i tolerances ABSTOL and RELTOL. In general, only one of these needs

be positive. If the user has a good idea of the order of magnitude

of the optimal function value (as, for instance, in Example 4 of

the next section), then ABSTOL should be set according to the final

b S

accuracy desired. 1If, on the other hand, the user has no reliable

jobol

guide to the magnitude of the final function values, we suggest the

K AR

default values of these two tolerance parameters. These cases are illustrated

=%
-

in Examples 5, 6 below where, in fact, even amaller values of RELTOL are employed.

ey

25

L o SO AR

3

V. PROGRAM OPERATION AND EXAMPLES

To utilize the program for the solution of a particular
optimization problem of the form (1), (2), the user should do the
following:

1) define the objective function £ in SUBROUTINE FUNC,
and the constraint functions gj in SUBROUTINE IMPLCT.
In the latter the notation XI(J) is used for gj,
with J=1, 2, ..., NIC;

2) alter the DIMENSION statement in the main program,
if necessary, to accomodate values NX>10 or NIC>9.

Compile and run, then:

3) input desired values of the relevant NAMELIST
variables, finally assigning a value to the control
IRUN from among the following options.

IRUN = O0: stop
1: becin with user specified complex XXO
2: begin with user specified feasible point XO
3: begin with all-random complex (specify NRANPT)
4: continue with further iterations from most recent
complex
5: restart as in IRUN = 2 with XO set equal current
best point
6: reset all NAMELIST variables to default values '
7: list current value of all NAMELIST variables

We now illustrate the operation of the program and the
results obtained on a variety of examples. The actual outputs

reported below result from operation of a double precision FORTRAN

26

version of our method in CMS on an Amdahl 470/V7 mainframe computer.

A listing of this version appears in the Appendix.

2 2
e s 2
Example 1. Minimize lOO(xz—xl) + (l-xl) .

This is a famous test problem associated with the name of Rosen-
brock. It is an unconstrained minimization; the objective function
surface is notable for a narrow deep curving valley. The trﬁe
solution is clearly 0 at (1,1). We implement the program by
setting NX=2, NIC=0, XMIN=2*-2, XMAX=2%*2, (thereby constraining
(x4X,) to the cube defined by |x;1<2), and MAXMIN = -1. We

report in Fig. 4 below the results of three sets of 10 runs with
the indicated values of ABSTOL, RELTOL, and STEP. (In all the

examples the default value STEP = 1.5 is used unless otherwise

noted.) In all cases the conventional starting value X0 = (-1.2, ;
1.0) was used (IRUN = 2). For this example, and in general when we can
reasonably guess at the magnitude of the optimal function value, we should set

RELTOL = 0.0 and choose ABSTOL according to the desired accuracy. We did so

in the second set of runs here, desiring that F be reduced below 10719, The

third set is the same except for STEP = 1.3 (the original Box recammendation) ;

in this case we note a slightly poorer and more erratic result.

e

b, ¢ Function Final
bt 1 Evaluations Function Value
i ABSTOL = 0.0 916 1.029 D-24
d RELTOL = 0.000001 (323) (2,106 D-24)]
1 ABSTOL = 5.0D-11 360 5.729 D-11
2 RELTOL = 0.0 : (53) (10.780 D-11)
ABSTOL = 5.0D-11 317 6.773 D-09
RELTOL = 0.0 (63) (18.333)D-09
STEP _=1.3

27

Vo) e e B |t i Vo L e

e b

R

L2 i
“)
Ava B

o

We note that since feasible points are readily available in
this example, the pure random start, being wasteful of function

evaluations, is avoided.

Example 2. Maximixe x12+4xlx2+7x22 over the set Q={(xl,x2):
Oixiil, -1§xl+2x2il, -1i3xl—4xzil}. This is a concave quadratic
program over the pentagonal region {# with exact solution 1.48 at
the vertex (0.2, 0.4). We set NX=NIC=2, XMIN=2x0.1l, XMAX=2x1.1,
XIMIN=2%-1,1, XIMAX=2*1.,1, ABSTOL=RELTOL=.000001, and made ten

runs starting from XO0=(0.3, 0.2). The results were

function function solution
evaluations value point
mean 54 1.478883 (.200004, .399998)
(standard error) (10) (0.000012) ((.000010, .000005)).

Example 3. Minimize 4x12-2.lxl4+x16/3+x1x2-4x22+4x24 over
the rectangle @ = {(x;, x,): [x;[<2.5, !x2|il.5}. This is another
famous test problem, the objective function being known as the "six
hump camel back function" [17]. It is a challenge for local
gradient-utilizing methods because of the presence of an assortment
of stationary points: 6 local minima, 2 local maxima, and 7 saddle
points. Published numerical tests of other global optimization
orocedures [(l17] give a global minimum value of -1.0316 at the
points (0.08984, -0.71266) and (0.71266, -0.08984), at a cost of

72-800 function evaluations. We set ABSTOL=RELTOL=0,0001 and made

28

5 runs each with KPTS=3, KPTS=4, starting in all cases at X0=(0,0)

(IRUN=2). The results were

function evaluations = function value
KPTS=3 132 -1,031626
(21) (0.000001)
KPTS=4 130 -1.031617
(14) (0.000012)

We note about the same amount of work involved with the larger
complex, but also a slightly greater variability in the final

answer.

Examole 4. Solve the nonlinear system of equations

6xl - xz + x, = 0.

By sketching the corresponding pair of curves in the (xl,xz) -
plane, one can easily verify a pair of exact solutions at (0,0) and
(2,4) and one other solution near (1.5, - 3.0). To determine this
third solution exactly we try to minimize the sum of the squared
residuals; that is, minimize (2x13x2-x23)2 + (6x1-x22+x2)2. The
least value is of course 0, and the solution point will be our

unknown third solution. We set Q={(x1, x2): 15;152, - 45;2§f2},

29

B ——————— -

X0=(1.8, - 3.0), and ABSTOL = 1.0D~-13, RELTOL = 0.0, (attempting to
obtain six or seven significant figures). The results of five

runs were

function evaluations solution point
mean 291 (1.464352, ~-2.506013)
(standard error) (24) (0.000000, 0.000000)

In all cases the objective function was reduced to less than

5.0D-12, with an average final value = 8.85D-13.

Example 5. Minimize x12+x22+x32 over the region
Q={(x;, %5, x3): lxililo, 3<x,X,X4, 32X;+X,-X3}. This problem is
unusual because ! is disconnected: it consists of three components
each of equal distance from the origin. Hence there are three
distinct solution points, each of which is a boundary point. These
points can be obtained via the Kuhn-Tucker conditions and analysis

of the vossible sign patterns of the coordinates, viz., (+,+,+),

(+,-,-), and (-,+,-). Thus the first point must obey the conditions

)
=3

X
xlx2x3

X, +X

1 "Xy = 3.

3

This leads to the cubic equations x2(2x-3)=3 for Xy its solution

= 1.910820 = x,8a. Therefore, x,=2x,-3 = 0.8216404b. By symmetry,

the other solution points are (a, -b, =-a) and (-b, a, -a), and the

L e e

N,

-~

...
Ay By . oy

BT S

common minimum function value = 7.977559,

This example is meant to typify the situation wherein we
are ignorant of the geometry of the feasible set 2. In such cases
we must resort to the oure random start option (IRUN=3), Setting
NRANPT = 500, ABSTOL = 0., and RELTOL = 1.0D-08, the program easily
reveals the three distinct solution points. The results of ten

runs were

function evaluations function value
mean 1043 7.977583
(standard error) (253) (0.000046)

Eight of the ten runs actually resulted in function values <7.977560.

2 2
Example 6. Minimize 100(x2-x12) + (l-xl) + 90(x4-x32)2

+ (1-x5)2 + 10.10(x,-1) 2 + (x,-1)%] + 19.8(x,-1) (x,~1), over the
four-dimensional cube Q={(x1,x2,x3,x4):Ixililo}. This is another
test problem associated with the name of Wood (6, p. 403]; it is
designed to have a non-optimal stationary point with a corresponding

function value of approximately 8.0 that can cause premature

convergence. The optimal solution is clearly 0 at (1,1,1,1). A
starting value X0=(-3,-1,-3,-1) is suggested. Our program handled
this problem easily with no premature stalls. The results of ten
runs with ABSTOL=0., RELTOL=1.0D-10 (the value of the objective

function was increased by 1) uniformly yielded function values

31

(dad 1
-
PO VRIS

sl

L b

e e e T S

< 1.0000000005. with an average of 1145 (198) function values.

Example 7. Our final example is a nonlinear regression
taken from [24}. The problem is to model the resistance (R) of

a thermistor as a function of temperature (T) via the model

R = a exp —b— .
T + ¢

Specifically we want to assign values to the parameters a,b,c

so as o achieve the best fit to the data

T R |
50 | 34,780 | |
55 | 28,610 §
60 | 23,650 |
65 | 19,630 *
70 | 16,370 1
75 | 13,720
80 | 11,540
85 9,744
90 8,261 ‘
95 7,030 ‘

100 6,005 ;

105 5,147 N

110 4,427

115 3,820 ‘

120 3,307

125 2,872

32

- ¢

L i R e B S

We do so by minimizing the mean squared residual
1/2

16 2
Z(Rj - a exp (T_P-TE)) .
3=1 ?
The source cited reports that this problem caused considerable
difficulity to the algorithms being tested. In general we note
that the special structure of'nonlinear least squares problems can
be utilized in the desigh of specialized algorithms such as the
methods of Gauss-Newton or Levenberg-Marquardt [25]. For the

latest in such algorithms, see [26]. These may certainly be

expected to be far more efficient than our present all-purpose
method. Nevertheless, it is interesting to test our method on
such a problem, recalling particularly the discussion of the
computer time vs. analyst time trade-off.

The suggested initial values are X0=(0.2, 4000, 250.),
the corresponding function value being 41,153. We set STEP=2,
and ABSTOL = .0001. = RELTOL . We also introduce the artifical
constraint gl(a,b,c) Q b/(50+c) < 70 in order to avoid overflow

problems in the exponential. The outcomes of ten runs were

classified as success or failure according as convergence was
or was not achieved with at most five restarts (IRUN=5). The

results were

33

b - ¢

function function CPU time
number evaluations value (sec.)
6480 9.3788 2.94
success 6
(1250) (.0010) (.58)
3031 267.74 1.24
failure 4
(1340) (90) (.70)

The mean solution point for the six successes was

(.005612, 6181.00

with standard errors (.000006, 0.85

, 345.210)

, 0.030); this may be compared

with the optimal solution reported in [24]:

(.005609, 6181.,

34

345.2).

b e

VI. CONCLUSIONS

The numerical practice of nonlinear multivariate
optimization is an important, difficult, and much studied subject.
Numerous algorithms have been proposed, some exotic, some effective,
most requiring special hypotheses on the objective and constraint
functions. We have presented here an extremely simple and robust
procedure for handling the most general nonlinear inequality con-
strained optimization, and demonstrated its operation and effective-
ness on a variety of test problems of low dimension. The method
utilizes the basic Box complex iteration with modifications to
avoid traps. The computer implementation provides a variety of
initialization and continuation features and is designed for
interactive use. While problems of a special nature can be solved
more efficiently with specially formulated algorithms, in a certain
practical sense our method is reasonably competitive with these,
and moreover constitutes a safe reliable procedure for use on
problems with little or no exploitable structure. Examples of
the latter, on which our method has been successfully applied,
include minimizing a discontinuous cost function subject to a
communications network reliability constraint, and minimizing a
two-stage survival probability function to achieve an optimal

attack against a given layered ballistic missile defense system.

35

10.

11.

12.

13.

14,

15,

REFERENCES

T. Arthamari and Y. Dodge, Mathematical Programming in
Statistics (Whiley, New York, 198l}.

M. Avriel, Nonlinear Programing (Prentice-~Hall, Englewood
Cliffs, New Jersey, 1976),

M. Bazaraa and C. Shetty, Nonlinear Programming (Wiley,
New York, 1979).

P. Gill and W. Murray, ed's., Numerical Methods for Con-
strained Optimization (Academic Press, New York, 1974).

M. Hestenes, Optimization Theory (Wiley, New York,1975).

D. Himmelblau, Applied Nonlinear Programming (McGraw-Hill,
New York, 1972).":

G. Walsh, Methcds of Optimization (Wiley; New York, 1975).

D. Wismer and R. Chattergy, Introduction to Nonlinear
Optimization.. (North-Holland, New York, 1978).

H. Kuhn and A. Tucker, "Nonlinear Porgramming", in Proc.
2nd Berkeley Symp. on Mathematical Statistics and Probability,
J. Neyman, ed., Univ. of California Press, 1951.

G. Zoutendijk, Mathematical Programming Methods (North-
Holland, New York, 1976).

J. Rosen, "The Gradient Projection Method for Nonlinear
Programming, Part I. Linear Constraints"”, SIAM J. Applied
Math. 8, 181, (1960).

R. Griffith and R. Stewart, A Nonlinear Programming Technique
for the Optimization of Continuous Processing Systems",
Management Science 7, 379, (1961).

R. Fletcher, "An Algorithm for Solving Linearly Constrained
Optimization Problems", Math. Prog. 2, 133, (1972).

E. Levitan and B. Polyak, "Constrained Minimization Methods",
USSR Comp. Math. and Math. Physics 6, 1, (1966).

J. May, "Solving Nonlinear Programs Without Using Analytic
Derivatives", Operations Research 27, 457, (1979).

36

l6. L. Dixon and G. Szegd, ed's., Towards Global Optimization
(North-Holland, New York,1975).

| 17. L. Dixon and G. Szegd, ed's., Towards Global Optimization
; (North-Holland, New York, 1978).

18. F. Archetti and G. Szegd, "Global Optimization Algorithms”,
in ugnlinear Optimization, L. Dixon, E. Spedicato and G.
Szego, ed's. (Birkhauser, 1980).

19, A. Waren and L. Lasdon, "The Status of Nonlinear Programming
Software", Operations Research 27, 431, (1979).

20. J. Kuester and J., Mize, Optimization Techniques with FORTRAN
(McGraw-Hill, New York, 1973).

2l. J. Lyness, "Has Numerical Differentiation A Future?", in
Proc., 7th Manitoba Conf. on Numerical Mathematics and Com-
puting, D. McCarthy and H. Williams, ed's., Utilitas Math-
ematica Publishing (1978).

22, R. Steplemand and N. Winarsky, "Adaptive Numerical Differen-
tiation", Math. Comp. 33, 1257 (1979).

23. H. Mosteller, "Heuristic Direct-Search Minimization", IEEE
Trans. Auto. Control 23, 493 (1978).

2 24. M. Box, "A New Method of Constrained Optimization and a
{ Comparsion With Other Methods", Computer J. 8, 42 (1965).

25, R. Meyer, "Theoretical and Computational Aspects of Nonlinear
1 Regression", in Nonlinear Programming, J. Rosen, O. Mangassarian
! and K. Ritter, ed's. (Academic Press, New York, 1970).

' 26. A. Ruhe and P. Wedin, "Algorithms for Separable Nonlinear]
. Least Squares Problems", SIAM Review 22, 318 (1980).

-

- [indd ".:'kﬂ‘ﬁ_
s .
ot via Ba. e

R el o - L wn al ey 100

Aggendix

This appendix contains the complete FORTRAN listing of the
optimization program described above. The data for the function

and implicit constraint portions, SUBROUTINES FUNC and IMPLCT

respectively, correspond to Example 7 in Section V.

IMPLICIT REALX8 (A-Hs 0-2)

DIMENSION XX(10915)yXSTAR(10) yXHINC(10) ¢ XMAX(10)»X0(10)
DIMENSION XIMIN(?) s XIMAX(9) 9 XI(P)»FF(15)9XX0(10,15)yX(10)
COMMON /BOXCOM/ STEPyRELTOL»ABSTOLyNTOLsN1CUTSy»N2CUTSsNLOOFS
» IPRINT » MAXMINy SEED » NRANFT » MAXRAN

REALX8 LXMINsLXMAXsLXIMINsLXIMAX2LXOrLXXOsLBLANK

NAMELIST /G0/ NXsNICyMAXMINy XMINyXMAX» XIMINy XIMAXy
x KPTSETyN1CUTSyN2CUTS»STEF s NLOOPSNTOL yARSTOL »RELTOL »

X IRUN» IPRINT» NRANFPT » MAXRAN Y SEED » X0 » XXO

DATA LXMINsLXMAX /78H XMIN yBH XMAX /
DATA LXIMINYLXIMAX /78H XIMIN +8H XIMAX /

DATA LXOsLXXOsLELANK /8H X0 v8H XXO y 8H /
C
C FPROGRAM NEWEROX USES SURROUTINE ROX TO SOLVE THE PROBLEM
C MAXIMIZE MAXMINXFUNC (X)
C SUBRJECT TO XMINCI) JLE. X(CI) +LE. XMAX(I) rI=19+0449NX
C XIMINC(J) JLE. XIC(J) LE. XIMAX(J) rJ=19 ¢4 e NIC
. C WHERE XI(J) IS THE VALUE OF THE JTH IMPLICIT CONSTRAINT FUNCTION
C EVALUATED AT THE POINT Xs AS COMPUTED IN SUBROUTINE IMPLCT.
[
C THE USER MUST SUFFLY SUBROUTINE FUNC(XsNXsF) WHICH CALCULATES Fy
C THE FUNCTIONAL VALUE OF A POINT Xy AND A SUERROUTINE
C IMPLCT(XyNXesXIsNIC) WHICH CALCULATES XIs THE NIC IMFLICIT
C CONSTRAINT VALUES CORRESFONDING TO THE POINT X.
(c
! C SET FARAMETERS TO THEIR DEFAULT VALUES.
[
‘ 100 KFTSET=0
- N1CUTS=8
: N2CUTS=16
! STEF=1.5
{ NLOOFS=500
NTOL. =5
L ARSTOL =0,
'< RELTOL=,000001
Y IRUN=3
! % IPRINT=1
NRANFPT=0

{ _ MAXRAN=100
i . SEED=184287807

ly Ry

00

C

READ NAMELIST %60 DATA DEFINING PARAMETERS FOR NEXT RUN

200 WRITE(6:9)

9 FORMAT (/1ENTER NAMELIST 8GO INFUT (IRUN=7 LISTS ALL)‘)
READ(SyGO)

IF(IRUNLLE.O) GO TO 1000
IF(IRUN-6) 30051005400

CALL ROX TO OFTIMIZE FOR THE CURRENT FARAMETERS

300 KFPTS=NX+(NX+1)/2

IF(KPTSET.GE.2) KFTS=KPTSET

CalL ROX(XXsNXsKFTSyNIC» XMINy XMAX» XIMIN XIMAX
X yFFs XTIy XSTARYFSTAR» X9 X0 » XX0» IRUN)

GO TO 200

FRINT THE CURRENT VALUES OF THE FARAMETERS

400 WRITE(&671) NXsNICyMAXMIN

1 FORMAT(’OCURRENT VALUES OF PARAMETERS ARE:‘s/»
X ‘0’ y10X» ‘FRORLEM DESCRIFTION’»/»
X * NXsNICYMAXMIN = ‘9315)
WRITEC6r2) LXMINY (XMINCI) »I=19NX)
WRITE(692) LXMAXy (XMAX(I)»I=1yNX)
WRITE(692) LXIMINy (XIMINCI)¢I=19NIC)
WRITE(652) LXIMAXy (XIMAXC(I)»I=1yNIC)
2 FORMAT(ABr’= ‘s1F10E12.45/»(10Xs1F10E12.4))
WRITE(653) KPTSETyNICUTSyN2CUTS»STEF yNLOOFSyNTOLyABSTOL » RELTOL
3 FORMAT(’0’ 910Xy ' ROX FARAMETERS’ /9y
X * KPTSETyNICUTSyN2CUTSsSTEP = ‘93IS5sF12.6v/ s
X * NLLOOFSsNTOLsARSTOL sRELTOL = ‘»2I5y1P2E12,3)
WRITE(4s4) IRUNs IFRINT »NRANFT s MAXRANySEED
4 FORMAT(’0’ 10Xy ’RUN INITIALIZATION FARAMETERS’s/y
X *IRUNy IPRINT » NRANFT s MAXRANy SEED = 9214921793X9Z16)
WRITE(692) LXOs(XOC(I)»I=1sNX)
WRITE(652) LXXO0s (XXO(Iy1)sI=1sNX)
Nno 440 J=2,KFTS

440 WRITE(4692) LBLANKy (XXO(IyJ)rI=1rNX)

GO TO 200

1000 STOF

END

40

——— e - - & —

Y, U

LA d
~4
Ava e’ st

Rl .

SURROUTINE ROX(XXsNXsKPTSoNICyXMINI XMAXs XTIMINs XIMAXsFF o XT
X r XSTARPFSTAR» X» X0 » XX0» IRUN)

IMPLICIT REALX8 (A-H» 0-Z)

DIMENSION XX(NXsKPTS) s XMINCNX) 9 XMAXINX) » XIMINC(NIC) » XIMAX(NIC)
DIMENSION FF(KPTS) »XI(NIC)»XSTAR(NX)

DIMENSTION X(NX)sXOC(NX)s» XXO(NXsKPTS)

COMMON /BOXCOM/ STEP»RELTOL»ABRSTOLNTOLNICUTS,N2CUTS,»NLOOPS
X » IPRINT»MAXMIN SEED» NRANPT

REAL X8 NDATE»NTIME

ROX SETS UP THE TNITIAL COMPLEX THEN CALLS GOROX TO FIND THE
OPTIMAL NX-VECTOR XSTAR AND ITS FUNCTIONAL VALUE FSTAR.

o000

GO TO (100,2005,300,400+,500)»IRUN

IRUN=1 . + + .« SET INITIAL XX TO USER-DEFINEDR XXO

o0On

100 WRITE(6+1) KPTS»STEF
1 FORMAT(’OENTERING BOX WITH DEFAULT XX‘»s/
X ' KPTSySTEP = “»15:F10.6)
no 150 J=1,KPTS
DO 140 T=1sNX
140 XX(Iy 0)=XXO0CTs Jd)
CALL FUNCC(XXC19J)sNXsFF(J))
150 CONTINUE
NFUNC=KFTS
GO TO 900
Cc
C IRUN=2 . .+ .+ « SET INITIAL XX RANDOMLY AROUND (FEASIBLE) XO
c
200 WRITE(692) SEED»KPTS»STEP» X0
2 FORMAT(’OENTERING BOX WITH RANDOM XX» SEED = ‘yD13.5,/

X v’ KPTSsSTEP = ‘9 I5sF10.6y/
’’ XO =’ 1P9FE12.4+/2(9X»1PPEL12.4))
CALL GBI(XXsNXsKPTSsXOsFFeXMINyXMAXs XIMINs XIMAX 2 X]T
X sNIC»IOK)
NFUNC=KPTS
IF(I0K.G6T.0) GO TO 900
GO TO 1000
c
€ IRUN=3 . + + + SET INITIAI. XX RANDOMLY IN FEASIRLE RFGION
c

300 WRITE(A693) SEEDIKPTSyNRANPT»STEP
3 FORMAT(OENTERING ROX WITH ALL RANDOM XX» SEED = ‘sD13.5»/

v’ KPTSyNRANPTySTEP = ‘y21I%5+F10,6)
CALL GBO(XXsNXsKPTSsFFsXMIN) XMAXs» XIMINY XIMAX
X tXIyNTCy X9 I0K)

NFUNC=MAXO(KPTS » NRANPT)
IFCINK.GT.0) GO TD 900
GO TO 1000

41

0o

aoo0on

c
c
c

c

IRUN=4 , + . . CONTINUE WITH XX AND FF AS ILEFT RY PREVIOUS RUN
400 WRITE(694) KPTS»NLOOPS,STEP
4 FORMAT(’OCONTINUING ROX WITH SAME XX‘»/
b 4 ’’ KPTSsNLOOPS»STEP = “y215sF10,6)
NFUNC=0
GO T0O 900

IRUN=S5 + + + « SET INITIAL XX RANDOMLY AROUND ILAST XSTAR

500 WRITE(4+6) SEENIKPTS»STEF»XSTAR
6 FORMAT(’ORESTARTING ROX AROUND XSTAR: SEEDN =/,D15.5s/

¢ y’ KPTSySTEP ='9135sF10.649/
X y’ XSTAR =/s1P9FE12.4y/9 (12X 1F9FE12.4))
CALL GRI(XXyNX»KPTS»XSTAR FFy XMIN» XMAXy XTMINy XIMAX X1
X yNIC,»IDK) H
NFUNC=KPTS
IF(IOK.GT.0) GO TO 900
GO TO 1000

NOW CALL ROX WITH XX AND FF TO FIND OPTIMUM XSTAR AND FSTAR

900 CALL TIMES(NNATEsNTIMFE, IVCPUI S ITCPU)

CALL GOBOX(XXsNXsKPTSsNICsXMIN XMAXs XIMIN» XIMAXsFFsXI
X ' XSTARYFSTAR» MLLOOFS s NFUNC)

FSTAR=MAXMINXFSTAR

CALL TIMES(NDATEs DTIME, IVCPU2,ITCFU)
TIME=,000013%(IVCFU2-TIVCPUL)

IF(IPRINT.GT.0) WRITE(495) MI.OOPSyNFUNC,TIME,FSTARyXSTAR

S FORMATC(‘0’»1ISy’ LOOPSs’ 16y’ FUNCS» ANDR’»F7.3»’ SECS LATER BOX’

X’ FINNS FSTAR AND XSTAR QF '»1PE16.99/» (1P9FE14,4))

1000 RETURN
END

42

SURROUTINE GOBOX(XXsNX»KPTSsNIC»XMIN» XMAX» XTMIN XTNAX
x yFFs XI»XCoFSTAR» MLOOPS » NFUNC)

IMPLICIT REAL%8 (A-Hy 0D-Z)

DIMENSTON XX(NXsKPTS) s XMINCNX) » XMAX(NX) o XIMINCNIC) » XIMAX(NIC)
DIMENSION FFC(KPTS)» XI(NIC)»XC(NX)

COMMON /BOXCOM/ STEPsRELTOL»ABSTOL »NTOL»NICUTSyN2CUTS s NLOOPS
X s IPRINT » MAXMIN

DATA 1011 / 091 /

c
C GIVEN AN INITIAL COMPLEX OF KPTS NX-VECTORS IN XX» AND KPTS
€ FUNCTION EVALUATIONS IN FFy GOROX WILL TRY TO FIND THE POINT
C WHICH MAXIMIZES FUNC ON THE FEASIBLE REGION. THIS FOINT IS
C RETURNED IN ARRAY XCr AND ITS VALUE IN FSTAR.
c
C FIND HI AND 1.0 POINTS IN THE COMPLEX
c

JLo=1

JHT=1

DO 40 J=2,KPTS

IFCFF(J) JLT.FF(JL.OY)Y JLO=J
IF(FF() BT FF(JHI)) JHI=Y
40 CONTINUE
ITOL=0
IFCIPRINT=2) 10055060
50 F=MAXMINRFF (.JHI)
WRITE (692) TO0sXI1sdHIF s (XX(Ts JHI) s X=1yNX)
GO TO 100
. 60 NO 70 J=1,KFTS
{ F=MAXMINXFF (J)

IFC(JNEJJHI) WRITECA2 1) TOsXApJsFo (XX(Xs.J)yImlyNX)
IFCJEQiJHI) URITECL22) T05X150sF»(XX(X2.))sI=19NX)
1 FORMAT ("’ LPoNFr JrFoX=93X391PE12.491XsPE11.3v/
x r (37X 1P9E11,3))
2 FORMATC(’ XXLPINF s JoF s X='»31321IPE12.491X9y9E11,3y/
‘ y (37X 1PPE11.3))
70 CONTINUE

%

c
C MAKE UP TO NILOOFS TTERATIONS» FACH TIME IMPROVING THE LOWEST VAILUE
c

100 NO 500 ILOOP=1sNILOOPS
LOCATE NEXT LOWEST POINT

A .

a0

NORMI.C= 1
IFUNC=NFUNC
NEXTLO=.)HI
DO 140 J=1,KPTS
IFCHNE.JILO AND, FFC) LT FFI(NEXTLO)) NEXTLO=J
140 CONTINUE

PR
g
Ada e

e

——— e A -

aon

o000

o000

C

s

c
C
c
c

C
c

FINN CENTRQOIN AND CHECK TTS FEASIBILITY.
CALL CENTER(XXsNXsKPTSy SL.Oy XC)
CALL FEASBL(XCoyNXs XCrXMIN) XMAX) XIMINs XIMAXsXIsNIC
X s NMOVES»0)
IF(NMOVES.GT.0) GO TO 200
FOR FEASIRLE CENTROINDs 1LOOK FOR NEW FOINT BY MOUVING FROM LD POINT
THRU CENTER RBY FACTOR NF STEP, THEN MOVE TOWARDS CENTER IF NECESSARY
TO GEY A POINT ROTH FEASIBLE AND RETTER THAN NEXTIL.O POINT.,
DO 150 I=1yNX
150 XXCIsJLO)=XX(I s ML)+ (L 4STEP)R(XCCI)-XX (T J1.0))
CALL MOVE(XX(1JLO) sy NXs XCoNMOVES)NLCUTSFF (UL.D) »FF(NEXTLO)
X s NFUNC» XMINs XMAX s XIMINy XIMAXs XI9NIC)
IF(NMOVES.LE.NICUTS) GO TO 400
IF AROVE DIDN‘T WORK:s OR IF CENTER NOT FEASIBLE» LOOK FOR NEW
FOINT BY MOVING FROM CENTER TOWARNDS HI POINT.
200 D0 250 I=1yNX
250 XXCTy H.0)=XC(I)
NORMI.C=~1
CALL MOVE (XX (1o JLO) s NXs XX (29 JHI) s NMOVESyN2CUTS
* yFFC RO FFINEXTLO) s NFUNC
x s XMINs XMAX s XIMINs XIMAX» XTI s NIC)
IF(NMOVES.LLE.N2CUTS) GO TN 400
IF THIS DIDN’T WORKs TEST ON ROTH SIDES OF HI FOINT ALONG L.INE
THRU CENTER FOR FEASIBILITY AND IMPROVEMENTY. IF BOTH ARE INFEAS-
JRLE QUIT WITH INFEASIRLE DIRECTION AT 800% IF ONE IS ROTH
FEASTBLE ANND BETTER, CONTINUE WITH IT3 OTHERWISE QAUIT WITH NO
IMPROVEMENT AT 700

CAllL FEASRLOXXC(12JLO) s NXyXXC19JLO) s XMINs XMAX» XTMIN XIMAX
X »XXsNIC»NMOVES»O0)

IF(NMOVES.LE.0) GO TQ 700

DO 260 I=1sNX

240 XXCIodLO)=XX (T o JHI)4CXX(Ty JHI)~=XXC(X» JI.O))

CALL FEASRL(XX (1o JLO) s NXs XXC1sJL.O) s XMINs XMAX» XIMIN XIMAX
X s XTsNICsNMOVES Q)

IF(NMOVES.GT.0) GO TO 800

CALL FUNC(XX(19 H.0)sNXsFFCJILO))

NFUNGC=NFUNC+1

IFCFFCILD) .GT.FF(NEXTILO)) GO TD 400

C NOW THAT WE HAVE IMPROVED THE LOW X+ TEST FOR COMPLETION AND
C LOOP AROUND AGAIN

c
400 MFUNC=NORMI.CX(NFUNC~IFUNC)

F=MAXMINXFF (.JL.D)
IF(FF(JILO) JLE.FF(JHI)) GO TO 440
IF(IPRINT.GE.2) WRITE(6+2) ILOOPsMFUNC»JLOsF

x . s (XX(IsJL.O)» X=19NX)
JHI=JLO
60 TO 450
440 IFCIFRINT.GE.3) WRITE(6:1) XLOOPIMFUNC,y JILOYF
X s (XX (Xo JLOY2I=1pNX)
450 JL.O=NEXTL.O

ITOL=ITOL+1
ATOL=DARS(FF (JHI)-FF(JLD))
IF(ATOL.LE.ABSTOL) GO TO 480

. IFCATOL .GT.RELLTOL XDABS(FF (JHT))) TTOL=0
480 IFCITOL.GE.NTOL) GO TO 400
500 CONT INUE
c
c NO CONVERGENCE
MLOOPS=NLOOPS+1
GO TG 900
(c CONVERGENCE
, 600 MLOOPS=I1L.00P
: GO TO 900
c UNABLE TO IMPROVE
(700 MI.OOPS=-T11.00P
: GO TO 900
é c INFEASTIBLE DIRECTION
| 800 MLOOPS=-NL.OOPS-1
‘ c

900 DO 950 I=1sNX
! 950 XC(I)=XX(XsJHI)
‘< FSTAR=FF (JHI)

RETURN
END

-

e
)
A B . ot

Lo gk

45

ey

SUBROUTINE FEASBL(XsNXsXCrXMINs XHAX» XIMINs XIMAX» XTsNIC
X s NMOVES » MAXMOV)
IMPLICIT REAL%X8 (A-H+0-Z)
DIMENSION X(NX) s XCONX) s XMINCNX) » XMAX (NX)
DNIMENSION XTMINCNIC) o XIMAX(NIC)»XI(NIC)
COMMON /ROXCOM/ STEPsRELTOL»ARSTOL)NTOL»NICUTS,»N2CUTS»NLOOPS

X y IPRINT y MAXMIN
C
C TRIES TO MAKE VECTOR X FEASIRLE RY (IF NECESSARY) MOVING X
C TOWARDS GIVEN FEASIRLE VECTOR XC UP TN MAXMOV TIMES.
C
C CHECK AGAINST EXPLICIT CONSTRAINTS
C
NMOVES=0
100 DO 200 I=1,NX
IF(XCO) JLT XMINCT) OR. X(I).BT.XMAXC(I)) GO TO 400
. 200 CONTINUE
c
C CHECK AGAINST IMPLICIT CONSTRAINTS
c
IF(NIC.LLE.0) RETURN
CALL TIMFLCT(X»NXsXIsNIC)
DO 300 I=1,NIC
: IFCXICI) JLT XIMINCI) JOR. XXICID.GY.XIMAX(X)) GO TO 400
{ 300 CONTINUE

RETURN
C INCREMENT NMOVES AND IF .LE. MAXMOVs MOVE X TOWARDS CENTROILD.

400 NMOUVES=NMOVES+1
IF(NMOVES.GT.MAXMOV) RETURN
DO 500 I=1sNX

500 X(I)=0.,5%(X(I)+XC(I))
GO T0 100

e A —

i
3]

END

byl 98

'_,_.,
Y S
Ava B

46

———— - e &

ooonnn

o000

SURROUTINE MOVE(XsNXsXT s NMOVES s MAXMOU s F s FMINY NFUNC
X s XMIN XMAX» XIMIN» XIMAX» XX 2 NIC)

IMPLICIT REALX8 (A-Hy0-Z)
DIMENSION XO(NX) s XTONX) » XMINCNX) » XMAXINX) s XIMINC(NIC)

DIMENSION XIMAX(NIC)»XI(NIC)

TRIES TO VERIFY THAT VECTOR X 1S BOTH FEASIBLE AND HAS VA(LUE
+6T, FMIN» IF NECESSARY BY MOVING X TOWARDS THE VECTOR XT UP
TO MAXMOV TIMES.

NMOVES=0
100 CALL FEASBL(XsNXsXTsXMINs XMAX s XIMIN» XTMAX» XToNIC

x » IMOVES s MAXMOV-~-NMOVES)
NMOVES=NMOVES+IMOVES

IF (NMOVES.GT.MAXMOV) RETURN

CAl.L. FUNC(XsNX»F)

NFUNC=NFUNC+1

IF(F.GT.FMIN) RETURN

Do 200 I=1yNX

200 X(I)=0.5%K(X(I)+XT(I))

NMOVES=NMOVES+1
IF(NMOVES.LE.MAXNOV) GO TO 100

ENR

SUBROUTINE CENTER(XXsNX»KPTSsNOTJI»XC)
IMPLICIT REAL%X8 (A-H»0-Z)
DIMENSION XX(NXsKPTS) s XC(NX)

COMPUTES THE NX-VECTOR XC AS THE CENTROID OF THE KPTS NX~VECTORS
IN XX LESS THE ONE INDEXED BY NOTJ.

DIVKM1=1,0/(KPTS~1)
DO 200 I=1yNX

XSUM=0.,
no 100 J=1+KPTS

100 XSUM=XSUM+XX(I»J)]
XC(I=(XSUM-XX(I,NOT.J))»XDIVKM1

200 CONTINUE

RETURN
END

SUBROUTINE GRBO(XXsNXsRKFTSsFFrXMINs XMAX» XIMIN XIMAX
* y XIyNICyX»10K)

IMPLICIT REAL%X8 (A-Hy0-2)

DIMENSION XX (NXsKFETS) sFF(KFTS) s XMINC(NX) y XMAX (NX)

DIMENSION XIMIN(NIC) o XIMAXC(NIC) yXI(NIC) »X(NX)

COMMON /BOXCOM/ STEFRELTOL »ARSTOL NTOLsNICUTS»N2CUTS»NLOOFS
b ¢ r IPRINT yMAXMINY SEEDy NRANFT » MAXRAN

CREATES A RANDOM INITIAL COMPLEXy XX» RY CHOOSING THE BEST KFTS
FOINTS OUT OF A COLLECTION OF MAX(KFTSyNRANFT) RANDOM VECTORS,
EACH UNIFORMLY DISTRIBUTED OVER THE FEASIBLE REGION.

FILL XX WITH KPTS FEASIRLE RANDOM VECTORS

aooooaooo

NRANX=0
MXRANX=MAXRANKMAXO(KFTS s NRANFT)
N0 300 J=1yKPTS
100 D0 200 I=1sNX
200 XX(T o J)=XMINC(I)+RAN(SEED) X (XMAX(I)~-XMINCI))
NRANX=NRANX+1
IF (NRANX.GT.MXRANX) GO TO 1100
CALL FEASRL(XX(12J) pNXsXX(1rJ) s XMINs XMAXy XIMINy XIMAX X1
(X yNICyNMOVESQ)
‘ IF (NMOVES.GT.0) GO TO 100
CALL FUNC(XXC(1sJ)sNXsFF(J))
300 CONTINUE

K1=KFTS+1
IF (K1.GT.NRANFT) GO TO 1000

JMINF=1
o 3500 J=2¢KFTS

S00 IF(FF(J) LT FF(JIMINF)Y) JMINF=J

600
650

700

800
200

c
1000

f c
1100
3

*

C CHOSE (NRANFT-KFPTS) RANIOM VECTORSs ALWAYS KEEFING IN XX
C THE BEST KPTS VECTORS LOOKEDR AT SO FAR.
c

DO 9200 K=K1sNRANFT
DO 650 I=1sNX
XCI)=XMINC(I)+RANZ2(SEED) X (XMAX(I)=-XMINC(I))
NRANX=NRANX+1
IF (NRANX «GT . MXRANX) GO TO 1100
CALL FEASBL(XsNXs Xy XMINs XMAXy XIMINs XIMAX»XIsNIC
» NMOVES »0)
IF (NMOVES.GT.0) GO TO 4600
CALL FUNCC(XyNXyF)
IF(F.LE.FF(JIMINF)) GO TO 900
FF (JMINF)=F
N0 700 I=1yNX
XX (I JMINF)=X(1)
JMINF=1
no 800 J=2yKFTS
IFCFF () JLTFFCIMINF)Y) JMINF=J
CONTINUE

I0K=1
RETURN

WRITE(&693) NRANX

FORMAT (1 OXx%%%Xx IN GBO» WE HAVE EXCEEDED THE MAX NUMBER’
»’ OF RANDOM FOINTS (‘921657)7)

I0OK=0

RETURN

END

49

SURROUTINE GRL(XXsNXsKFTSsXOrFF s XMINy XMAXy XIMINs XIMAXy X1
* 'NICyIOK)

IMFLICIT REALX8 (A-HyO0-Z)
DIMENSION XX(NXrKFTS)»XO(NX) yFF(KFTS) s XMIN(NX) » XMAX (NX)

DIMENSION XIMIN(NIC) s XIMAX(NIC)yXI(NIC)
COMMON /ROXCOM/ STEFsRELTOLyABSTOL /NTOLyNICUTSyN2CUTSNLOOPS
X IPRINT yMAXMIN» SEEDy NRANFT s MAXRAN

CREATES A RANIIOM INITIAL COMFLEX» XX» AROUND AND INCLUDING
A GIVEN FEASIBLE VECTOR XO.

CHECK X0 FOR FEASIERILITY AND THEN PUT IT IN XX

aooooOn

CALL FEASBL (XOyNXy X0y XMINyXMAX s XIMINs XIMAXy XI»NIC -
X y NMOVES»0)
IF(NMOVES.GT.0) GO TO 1000
RO 350 I=1sNX
50 XX(Is1)=X0(I)
CALL FUNC(XOsyNXyFF (1))

FILL REST OF XX WITH RANDOM VECTORS WHICH HAVE BEEN FORCED
FEASIELE BY MOVING THEM TOWARDS XO IF NECESSARY,

aoonon

NRANX=0
MXRANX=MAXRANX (KPTS~1)
N0 400 J=2yKPTS
100 [0 200 I=1,NX
200 XX(IyJ)=XMINCI)+RANZ (SEED) k(XMAX (T) ~XMINCI))
NRANX=NRANX+1

IF (NRANX.GT «MXRANX) GO TO 1100
CALL FEASBL(XX(1vrJ) sNXrXOrXMIN» XMAX s XIMINy XIMAX» XIsNIC

X y NMOVES y N2CUTS)
IF (NMOVES.GT .N2CUTS) GO TO 100
CALL FUNC(XX(1yJ)eNXyFF(J))
400 CONTINUE

I0K=1
RETURN
c
1100 WRITE(692) NRANX
2 FORMAT(/OXx%¥%x%x IN GEly WE HAVE EXCEEDED THE MAX NUMBER'
X v/ OF RANDOM POINTS (‘9169))
I0K=0 4
RETURN
c
1000 WRITE(691) XO
1 FORMAT (/O%kXk¥xk NON-FEASBIBLE INITIAL POINT GIVEN TO GB1’+/
X v’ X0 ='91P10E12.4)
I0K=0
RETURN

END

SURROUTINE FUNC(XsNsF)

IMPLICIT REAL%X8 (A-H»0-2)

DIMENSTION X(N)

COMMON /ROXCOM/ STEP'RELTOLsARSTOL»NTOLNICUTS»N2CUTS»NI.OOPS

X s IPRINT»MAXMIN

DIMENSION Y(16)
DATA Y/34780.128610.923650.919630.316370.913720.+v11540.,9744.+,8261

g 0 27030.96005.95147.+4427.,3820.¢3307.,2872./
RESQ(A»BICyY»T) = (Y - ARDEXP(R/(T+(C)))%X%2

COMPUTES Fy THE VALUE OF THE FUNCTION WHEN EVALUATED
AT THE FOINT X (AN N-VECTOR).

o000

F = 0.
DO 100 J=1,16
T = 50.+5.x(.J-1)
100 F = F + RESQIX(1)9X(2)9X(I)sY(JI»T)
F = DSART(F)

F=MAXMINXF
RETURN
END

SURROUTINE IMPLCT(XsNXsXT»NIC)
IMPLICIT REALX8 (A-H»0-2)
! DIMENSTON X(NX)sXI(NIC)

COMPUTES XIy THE NIC-VECTOR OF IMPLICIT CONSTRAINT
FUNCTION VALUES AT THE NX~VECTOR X.

aonoonn

XI(1) = X(2)/(50.4X(3))

AN
9]

RETURN
END

UNCLASSIFIED

SECURMTY ,LLQS‘HCATW OF THIS PAGE (When Data Entered)

ol A\
R

REPORT DOCUMENTATION PAGE

" ESI¥TR-81-155

2. GOVT ACCESSION NO. |

——
READ INSTRUCTIONS
BEPORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtisle)

AD-11p4 ¢5¢

[5 TYPEOF 8
Technical /ﬁep;ﬂ. .

[N .-REPORT
Technical Report 576

L

L e

. - ..‘

> Practical Aspects of Nonlinear Optimization \ \4{;
7. AUTHOR/s)

‘ _ A

t- \ Richard B.|Holmes ame Jeffrey W. Tolleson ' Q

8. CONTRACT OR GRANT NUMBER/s)

\,.___._,-—»----»j
a F19628-80-C-0002]

i -

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Lincoln Laboratory, M.I.T.
P.O. Box 73

10. PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS

Program Element Nos. 63304A

Lexington, MA 02173 and 63398A
11. CONTROLLING OFFICE NAME AND ADDRESS -~12. REPORT DATE

Ballistic Missile Defense Program Office / / ‘J*{\-ig June2961 '

Department of the Army Z

5001 Eisenhower Avenue 113 NUMBER OF PAGES

Alexandria, VA 22333

58 G o l_._._'..\\ ,

14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)

Electronic Systems Division
Hanscom AFB
Bedford, MA 01731

15. SECURITY CLASS.(of this report) <
Unclassified

150. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the absiract ensered in Block 20, if differens from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side if necessary and idensify by block number)

nonlinear programming method

computer code

20. ABSTRACT (Continue on reverse side if necessary and idenisify by block number)

A general purpose nonlinear programming method and computer code are presented. The method is
basically heuristic but extremely simple and reliable. Interactive operation of the code and its performance

on several test problems is described.

FORM 1473
1JANT73

EDITION OF 1 NOV 45 IS OBSOLITE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Ensered)

